CS 545 : Assignment 8

نویسنده

  • Christopher Mullins
چکیده

A Self-Organizing Map (SOM) is a type of artificial neural network used to transform a data set of vectors into a set of lower dimensional vectors. The applications of this are wider than one might expect, but this is the heart of its purpose. The data are usually some set of vectors {x ∈ Rn}, but a SOM can work with any set of vectors that have a well-defined distance metric. The canonical examples and demonstrations of SOMs reduce an n-dimensional data set to a 2-D data set. In section 2, I describe SOMs in more detail. In section 3, I present the traditional iterative algorithm used to construct Self-organizing maps. I include the R code that I use to generate the data, run the SOM algorithm iteratively, and display the results in section 4. Section 5 includes several examples of SOMs constructed from data sets in [0, 1] × [0, 1] × [0, 1] interpreted as color data (where each dimension is the intensity of one of red, blue, or green). Applications of SOMs are discussed in section 6, and conclusions are included in section 7

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CS 545 Assignment 8 A Survey on Approaches to Improve kNN Classification Performance

3.1 Vector M odel ............................................................................................. 4 3.2 Terms W eighting ....................................................................................... 4 3.3 Similarity M easuring ................................................................................. 5 4 Improving kNN Performance using Different Term Weighting Sch...

متن کامل

CS 545 : Assignment 8 A Scaled Conjugate Gradient Implementation for R Andy

3 Implementation Details 3 3.1 R Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3.2 C Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3.2.1 Efficient Vector Manipulation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3.2.2 The Core SCG Implementation . . . . . . . . . ...

متن کامل

CS 545 Project ParamNN: A Parameter Prediction Neural Network

3 ParamNN 2 3.1 Randomly Generated Seed Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3.2 Predicted Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3.3 Best Predicted Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3.4 Jittered Best Predicted Parameters . . . . . . . . . . . . . . ...

متن کامل

ar X iv : 0 80 6 . 32 58 v 3 [ cs . D S ] 5 S ep 2 00 8 Local Search Heuristics for the Multidimensional Assignment Problem

The Multidimensional Assignment Problem (MAP) (abbreviated sAP in the case of s dimensions) is an extension of the well-known assignment problem. The most studied case of MAP is 3-AP, though the problems with larger values of s have also a number of applications. In this paper we propose several local search heuristics for MAP and select the dominating ones. The results of computational experim...

متن کامل

Synthesis, structure, and metalation of two new highly porous zirconium metal-organic frameworks.

Three new metal-organic frameworks [MOF-525, Zr(6)O(4)(OH)(4)(TCPP-H(2))(3); MOF-535, Zr(6)O(4)(OH)(4)(XF)(3); MOF-545, Zr(6)O(8)(H(2)O)(8)(TCPP-H(2))(2), where porphyrin H(4)-TCPP-H(2) = (C(48)H(24)O(8)N(4)) and cruciform H(4)-XF = (C(42)O(8)H(22))] based on two new topologies, ftw and csq, have been synthesized and structurally characterized. MOF-525 and -535 are composed of Zr(6)O(4)(OH)(4) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009